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In this paper, we study a coupling of spectrat methods and the
p-version finite element methods for efliptic boundary value problems
comtaining singularities. The method of auvxiliary mapping, which is a
recend development o deal with domain singularities in the p-version of the
finite element method, is employed to remove the pollution clfect caused by
singularitics, An iterative interfacial coupling between speciral methods
and the p-version of the finile element method is used and investigated
numerically. The advantages of such an approach are demonstrated by the
high accuracy of spectral methods for the smooth part of selutions and the
flexibility of the p-version of the finite element method for dealing with
singularities and irregular domains. The cfficiency of the coupling method
is also evaluated by comparing results obtained by this method with those
obtained by the full finite clement algorithm. D 1993 Academic Press, Inc.

1. INTRODUCTION

Spectral methods have proved to be very effective for a
variety of flow simulations. However, as global methods
based on orthogonal polynomial approximations, they have
some restrictions. The solutions of the physical problems
should be smooth and the solution domain should be
rectangular-like; otherwise spectral accuracy cannot be
obtained.

To ease the restriction on the geometry, the spectrai
element method has been proposed. This method has been
successfully applied to solve Navier-Stokes equations on
domains which can be divided into rectangular-like sub-
domains [19, 227]. However, the spectral saccuracy can only
he achieved when the solution possesses no singularitics.
The singularities in the solutions can be divided roughly
into two sources. First, there are singuiarities that come
from “internal™ aspects of the equations, as shock waves in
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conservation laws. Second, there are singularities that come
from “external” aspects of the equations. These aspects
include irregularities of domain, matching of different types
of boundary conditions, nonsmoothness of data, and so on.
For both cases, spccial attention bas to be paid when spec-
tral methods arc applied. In this paper, we are concerned
with problems containing the latter type of singuiarities.
Spectral methods for shock waves have been studied
in [9, 25].

In the spectral-element approach, the spectral approxi-
mation is applied on each of the subdomains. Therefore, for
those subdomains where the solutions are not smooth, the
high order accuracy of spectral methods will be destroyed,
as usual. To eliminate as much as possible the influence of
the irregularity of geometry on the overall accuracy of
spectral methods, different approaches have to be adopted.

The finite element method is flexible in dealing with
problems on irregular domains and with problems con-
taining singularities. Moreover, the method of auxiliary
mapping, developed recently [4, 20, 217, can handle such
singularities effectively and economically when it is applied
in the p-version of the finite element method. Thus, in this
paper, we intend to couple spectral methods and the
p-version of the finite element method. With this approach,
we expect to keep the merits of the iwo approaches: the
high accuracy of spectral methods for smooth solutions and
the flexibility of the finite ¢lement method in dealing with
irregular domain geometry. The essence of the coupling
method is dividing a given domain £ into large rectangular
subdomains £, and the remaining part Q. =\Q,, and
then applying spectral methods on €, and the p-version of
the finite element method on £2,,. Here the domain £ is
divided so that the subdomains 2., do not contain any
singularities. The coupling of spectral and the A-version
finite element methods has been attempted in [8]; however,
the essential problem of singularities in the solutions has not
been addressed.
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COUPLING OF SPECTRAL METHODS

Like any other hybrid method, the essential issue in
coupling two types of numerical methods is a correct and
efficient formulation of matching conditions on the interface
where two different methods are patched. in [8], based on
the variational argument of the original elliptic equations,
several types of interface conditions have been suggested
and studied. There the solutions from both the spectral and
the finite element methods are coupled, resulting in large
systems of algebraic equations to solve.

In [10], an iterative interface technique was suggested to
match two spectral solutions along a common interface.
With such a technique, solutions in the spectral domain and
the finite element domain are determined separately and
sequentially, and the solutions in separate domains are
coupled through the boundary condition on the interfaces.
The process of iteration stops when some prescribed criteria
is satisfied.

An iterative interface coupling of spectral and finite dif~
ference methods for smooth solutions on arbitrary domains
has been examined [17]. This approach for treating inter-
faces have also been used in [12-147 in coupling different
types of numerical methods for numerical solutions of ellip-
tic, parabolic, and hyperbolic partial differential equations,
The novelty in our approach lies in coupling spectral and
the p-version finite element methods; within the p-version of
the finite element method, the method of auxiliary mapping
is used.

With the device of an auxiliary mapping [4] in the
framework of the p-version of the finite element method on
singular regions £2,., the poliution effect on spectral
subdomains £, caused by singularities can be removed
completely or can be reduced significantly.

As a first part of our investigation of this coupling
method, we test the method on Helmholtz equations on
polygonal domains which have re-entrant corners or cracks.
The motivation to use Helmholtz equations as model
problems is twofold. First, many problems in solid
mechanics and electro-magnetics are related to the solution
of these equations. Second, in the spectral simulations of
Navier-Stokes equations [19], the diffusion term is often
treated implicitly and the Helmholtz equation has to be
solved in each time step. Thus, it is of practical interest to
have an accurate solution of the Helmholtz equation. We
can increase overall accuracy of spectral discretization of
Navier-Stokes equations.

This paper is organized as follows. In Section 2, we
mtroduce numerical techniques to be used in the coupling
of spectral methods and the finite element method. In
Section 3, numerical results for the Helmholtz equation on
different irregular domains are presented. We also give a
comparison in terms of accuracy and CPU time between
results obtained by our coupling method and the results
obtained by the p-version of the finite element method.
Finally, concluding remarks are given in Section 4.
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2. NUMERICAL METHODS

In this section, we introduce some numerical techniques
that are used in coupling spectral methods with the finite
element method. They are the method of auxiliary mapping
[4, 20, 217 in the framework of the p-version of the finite
¢lement method, the pseudospectral Chebyshev collocation
methods [10, 15] and the iterative interface method
[11, 267.

Let us consider the following elliptic boundary value
problem:

—Au+pu=f in £, (1)
u=g on/fp, (2)
6—u=h on [y, (3

Jn

where T,uTly=082, Q is a polygonal domain, =0,
measure (I,) >0, fe L}Q), and du/on is the outward
normal derivative to I',,.

For regularity assumptions on g and A, we refer to
Theorem 7.53 of [1] and Theorem 3.1 of [2].

2.1. The Method of Auxiliary Mapping in the Framework
of the p-Version of the Finite Element Method

The results and arguments of this section are essentially
unchanged if the Laplacian 4 is replaced by the general
elliptic operator ¥ =3, d/dx;(a;d/0x;}. Let G be a
smooth extension of g with bounded support. Then by
setting w=u— G, one can convert the elliptic problem
{1)-(3) to the problem of the same type with homogeneous
Dirichlet condition. Thus, it is sufficient to consider the
problem (1)-(3) when g =0.

Let HY Q)={ueL¥Q):Duel*()} and H,(Q)=
{ue H'(2):u=0 on [}, where Du is the weak partial
derivative, then the exact solution u,, of (1)—-(3) means the
unique weak solution of the following problem: Find
ug, € HL(82) such that

B(u, v) = F(v)

forall ve HL{Q), (4

where

Blu, v)= JL) {(Vu.-Vo+ u(u-v)} d,
F(v)= Hﬂ fodQ + jr ho dy.

2.1.A. The p-Version of the Finite Element Method

There are three versions of the finite element method: the
h-version, the p-version, and the A-p version. The A-version
is the standard one, where the degree p of the elements is
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fixed, usually at a low level, with p=1, 2, or 3 and the
accuracy is achieved by properly refining the mesh. The
p-version, in contrast, fixes the mesh and achieves better
accuracy by increasing the degree p of the elements
uniformly or selectively, The A-p version is a combination of
both. The p-version of the finite element method is a new
development [5, 7, 247. Hence, in the following, we describe
the p-version of the finite element method.

Let §,= {we H,(2):w|.oP,is a polynomial of degree p
on E for every element ¢}, where @,: E — ¢ is the element
mapping and E is the standard triangular element T or the
standard rectangular element Q, according to whether e is a
triangular element or a rectangular element. Then the
p-version of the finite element method is defined as follows:
Find u, e §, such that

Blu,,v)=F{v)  forall

veS,. {5)
The dimension of S, will be called the degree of freedom
and denoted by DOF. Let us note that in the p-version the
triangulation of £ 1s fixed and only the degree p of polyno-
mial is increased. If u,, € H 1,(Q) is the exact solution then

“H —Hey ME= Erlu;l HW —Hey HE7

>p

P

where |- [z is the energy norm.
Let I=X +I.X2 and é = él + iél' Let

S={(r.MN:0<r<R a<l<b},

S§*={(r*, 0*):0<r* < R* a* <O* < b*}

(6)
(7)

be two circular sectors on the z-plane and the &-plane,
respectively. Suppose ¢*: $* — § is the conformal mapping
defined by

z=XE)=¢" (8)
and let ¢ be the inverse function of ¢*; then the deter-
minants of their Jacobians are

1

™) = a*(r* P L) =Fr2“"”’, )

respectively. Henceforth, the pull back of a function
J+ 8-> R by the conformal mapping ¢ is denoted by f (that
is, f=fo").

The following was proved in [4, 217.

Lemma 2.1, For u, ve HY(S), we have
H {Vu -Vo+u-v}dx, dx,
LY

=HS.{Vﬁ‘v’“lf(fﬂ“)lﬁ-ﬁ}d&diz (10)
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and

e de=f{ a@+ ey i o

2.1.B. The Method of Auxiliary Mapping

We now describe the method of auxiliary mapping,
which can efficiently handle elliptic problems containing
singularities {corner, jump of boundary data, interface of
two or more materials). Suppose the exact solution u,, has
a corner singularity at P and suppose f=0 on a
neighvborhood of P {argument is similar if f#0 on any
neighborhood of P). Let wr be the interior angle at P. Then,
on a neighborhood of P, the exact solution u,, can be
written as

Uen(r, 8= @, 7™ sin(k8w)

and the method goes as foliows:

Step 1. Determination of the singular regions. At cach
singular point P, construct a sector S centered at P, Namely,

S={(r8):0<r<R,} N,

where (r, 8) are the polar coordinates at P. Our method is
not sensitive to the size of the radius R since we are using
the method in the p-version of the finite element method.
However, when the singularity is very strong, it is better
to choose for R, to be a little bit large if it is possible
(i.e., 1 = Ry=0.5).

Step 2. Selection of auxiliary mapping. Suppose e > 1.
Then the auxiliary mapping can be chosen as follows: Let
us define an auxiliary mapping by < §* - 8, where
z=@%¢)=¢%, a conformal mapping from the {-plane to
the z-plane. Then the auxiliary mapping ¢* transforms a
singular function u,, on S to an analytic function ., on S*.
That is,

le(r, 0%)= Y a(r*)* sin(k0*).
k=1

Step 3. Trangulation of 2. Generate a triangulation 75
on S as shown in Fig. 2.1. Then construct a triangulation 4
on £2 such that 7| g = 7. Let 7 ¥ be the image of 7 under
(=)~ ! (see, Fig. 2.1).

Fore*e 7 ¥ (and e Ty =T \75), &,. (P,) 1s the usual
elemental mapping from the standard element £ (which is
either the reference triangle or rectangle according as e* (e)
is a triangular or a rectangular element) onto curvilinear
elements e* (e), respectively. Since we allow circular arcs
as sides of elements, they counld be of the blending type as
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FIG. 2.1. The schemes of ap auxiliary mapping p*, mesh on a circnlar
sector S, and the corresponding mesh on S*.
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those in Chapter 6 of [24] and satisfy the usual technical
conditions [ 3] that lead to conforming clements.

Step 4. Computation of stiffness matrix and load vector.
In computing local stiffness matrices and local load vectors,

« Use the standard elemental mapping ¢, for the
elements ¢ in the nonsingular region Q, =\ S.

» Use the standard clemental mapping @,. for the
clements ¢ in the singular region S; in other words, local
stiffness matrices and load vectors on the element ¢ in the
singular region are replaced by those computed on the
elements e, = (¢“)~" (¢) by using the right-hand sides of
Egs. (10) and (11).

Let @2 denote the special elemental mapping from E onto
e€ d, defined by @ =¢“od,.. We will call this special
elemental mapping @7 the singular elemental mapping. 1f @3
is used as the elemental mapping on the element ¢ n a
singular region S then the basis functions constructed
through &F will mimic the original singularity on S.

Let . be the standard shape functions on E, A" =
No® ' and A= Ao (PF) 7). Then Ao p* = .4 *. Hence,
from Lemma 2.1, we have

[ {9HTA)T + (A AT} e
([ VT p e AT (12)

JLf“‘G dx = H lo*)| fA ¥ dE.

Instead of computing the left-hand sides of (12}-(13)
involving singular shape functions, we compute the right-
hand sides of (12)-(13) for the local stiffness matrix and
load vector on the elements ¢ in the singular regions. Thus,
the computer implementation of our method is quite simple
since any existing finite element code can be used for the
computation of the right-hand sides of (12)~{13) without
any alterations. Furthermore, if xy=0 and =0 on S, our
method does not require any extra work.

Suppose e, €7, e,€ T, and y=e, Nne,={(ry, 0):a<

(13)
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§<b). Then the conformal mapping {¢“) ™" is linear on
the closed interval [a, b] and hence the basis functions
constructed by using the usual elemental mapping @, for
e < 2, and the singular elemental mapping @2 for e = S are
continuous along their common edges 7.

Thus far, for brevity, the method was explained for the
case of one corner singularity, The argument is similar to
the case when the problem contains many singularities of
different types (we refer to {4] for the corner singularities,
to [20] for the boundary data singularities, to [217] for
interface singularities).

Suppose u,, has corner singularities at P, ..., P,,. For
each ¢, let S, be the singular region determined by Step 1,
w,n be the interior angle at P,, ¢“¢ be the auxiliary
mapping determined by Step 2, 7, be the triangulation on
S, determined by Step 3. Suppose u.,|o,€ H*(£2,) and
ligx | o, € H*(R2,), 1 < ¢ < M. Then without loss of generality
we can assume that (k,—1)>1,0<(k,— 1)< 1, foreach g,
l<g< M. Since o, was assumed to be >1, #,=
tex g2 7€ H ¥ (Q¥)and (k) — 1) > | Here o“4{Q}) = 2,
The following results were proven in [4, 20].

TaEoREM 2.1. (1) Suppose ul™-~“M s the finite
element solution obiained by employing the method of
auxiliary mapping with the auxiliary mapping @ on each
singular region Q2 in the framework of the p-version of the
finite element method. Then we have

” 1\l ou)

r T Uy ”I.Q
"uex "ko fei) M ”ﬁex “k“ 2*
1 i\ E
S[CO N(kufl),fz + Z C‘n’ N(km__l)ﬂ]’ (]4)
» 7= st

where N, is the degree of freedom and, for each q,0 < g < M,
C, is independent of N ,.

(2) Ler u) be the finite element solution obtained by
employing the method of auxiliary mapping with the auxiliary
mapping @1z = &Y% i the framework of the h-p version of
the finite element method; then

]juex - u; ” 1,42

wo— L 2 He—1

h h .
< |:CO ;JmTl Nt I ko9 T qg] C;F | I k;,g;:l:
where wg=min(p+ 1, kg), p,=min(p+1,k7), for g=
1, .., M, and the constants C,, are independent of the polyno-
mial degree p, the mapping size w,, and the length of the
largest side h.

2.2, Chebyshev Collocation Method

Tn the most common Chebyshev collocation method, the
collocation points in the interval [ —1, { ] are chosen to be
the extrema

nj
X;==C08 =

N (=0, .., N}

(15)
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of the Nth-order Chebyshev polynomials Tx(x). Here the
Chebyshev polynomial of degree r is defined by

T.(x)=cos{ncos™ ' x). {16)

In order to construct the interpolant of u(x} at the point
x we define the polynomials

(1 —x%) Tilx)(-1)/*!

ENH(x—x)) (j=0...N) (17)

¢j{x)=

with ¢y =y=2, &;=1 (1< j<N~—1) Tt is readily verified
that !,'ﬁ}(xk) =5jk'

The Nth-degree interpolation polynomial, Pyu(x}, to
u(x) is given by

N
Pyu(x)= Y u(x) ¢;(x). (18)
=0

Alternatively, P, u(x) can be expressed in terms of series
expansion of Chebyshev polynomials,

Pyu(x)= 3, a,T,(x), (19)
where

(20)

It should be noted that the coefficients a, in (20) can be
evaluated by using the FFT. In fact, using (16) in (20) gives

(21)
Aj=0 i

The second step in getting a coliocation approximation is
to express the derivatives of Pyu in terms of u(x) at the
collocation points x,. This can be done by differentiating
either (18) or (19). With (19) we obtain

5 N ds
e PN”(-“):JZ,O ”(&]%é;(x) (22)
so that
P _ Y uix, DS 23
dx* at(xg) ,—g'o “(x,)( Mk (23)
where
(Di)es =55 8o (24)
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For example,

cA—1)F

DL, =2 D" ey,
X —X;

Uy o

[DN)j,j—' 2(1 _x;‘_.?)ﬂ (25)
AINZ+ 1

(Dzlv)o.lJ: 5 = —"(DJI\I)N.N!

and

D =(DL) (26)

2.2.A. Chebysheu Collocation Method for the One-Dimen-
sional Problem

Let us consider
;U.m:=f iﬂ(—l,l),
U(x0)=g+? U(XN)=gJ’

(27)

where x,=1and xy= —1.

The collocation approximation of (27} resulis in the
algebraic system of equations for the unknowns u; = u(x,),
0<j<N,

N
”Z u(xj)(DzN)k.j=f(xk)5 Ik N-1,
i=0

(28)
Ho=g", uy=g ,
where 1, = u(x,) and u, =u(xy). Let
dy= ((D?V)L(h (D2N]2,0v s (D?V)Nf I.G)T! (29)
BN= ((D/Zv)l‘m (Dz,v)z,m s (DZN)NJI,N)Ts (30)
and
Then
(DX)o.o (Do
Di=| @y D3, By (32)
(DY) .0 (DX wn
Thus (28} becomes
Uy
Uy
—(ay, D5, By) : =f, (33}
Uy s

Y
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where £=(fy, ../ ¥)T, wy=u(x;), f;=f(x,). Since ug=g"
and uy=g~, from (32) we can obtain the algebraic
equations

—Du=1+g%oy+g By, (34)

where u={u, uy, ., uy_,)".

22.B. Chebyshev Colliocation Method for the Two-Dimen-
sional Problem

Let us consider the Helmholtz equation

AU+ plU=f
U=g

in £2,

35
on 482, (3
where @ =[—1,1]x[—1, 1] For a general rectangular
domain @' =[—a,b]x[—c,d], we can use the affine
transformation that maps £ into ' Like the one-
dimensional problem, we choose the following Chebyshev
collocation nodes:

X,=cosZ  (0O<i<N), (36)
y,:cos.”—ﬂ;r (0 <j<M) (37)

The two-dimensional Lagrange polynomials are defined
by the tensor product of the one-dimensional counterparts
in x- and y-spatial directions with appropriate degrees,

(=11t~ x7) Thix)

q):_'f(xs y)=

&N (x—x))
EDT ) Toly)
a?jMz(y—y',-)
=@} (x) 6" (»), (38)

where y=cy=dy=d, =2, ¢;=1 (1<i<N—1), d_'jzl
I<jsM-1).
It is also readily verified that
¢'ij(xn': V) = 5;.'5_;»1- (39)
The interpolant polynomial, P, u(x, y), to u(x, y) is
given by

N M
Popgulx, y}= Z Z uix;, }’j) ‘Dij(xs ») {40)
i=0 j=0

Let w;=u(x, y;); then with given Dirichlet boundary
conditions we have only (¥ —1}x(M —1} unknowns u;
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(1<i<N-—1, 1<j<M—1) We put the unknowns {u,}
into vector form in two different ways,

u, ¥
u; ¥2
U= . y v= N
Uy Vu—1

_ T
where w,=(u, ;, s 5y ttpy_y ;)

and v;=(u;,, u
u, 4 1)". Then, for fixed y,,

25 v

Diw+aygt +Byg; (41)

gives 3’u/dx? along the jth row mesh points, where a, and
P~ are vectors defined in (29)-(30} and g;* = g(x,, ¥,),
g, =8&(xy, y;h 1€ j< M— 1. Therefore,

DA, i,
D3, u,
DL \ay
gl ay g Bn
+ g;.ﬂN 4 8zleN (42)
gi_ it g3 1By

is 8*u/@x” evaluated at all interior nodes, arranged in a row
by row order.

Similarly,
D3, ¥,
D, v,
DL, Yar_ o
Rilay, hi B
+ _
A Y S 2 (43)
Ay_ 18y hy_1Bum

gives @*u/dy” evaluated at all interior nodes, but arranged in
a column by column order, where k¥ = g(x,, vo)and i =
gxnyu)h 1SiSN-—1.

We know that for our vectors U and V there exists a
permutation matrix P such that

U=~FV. (44)
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Let us denote the (N —1)x (M —~ 1} by (N— 1) x (M —1)
block matrices by

Dy
DZ
D = N (45)
D2,
and
D3,
DZ
D= M : (46)
Dy
and also let
f,
f
F=| 7 |, (47)
frrs

where £,= (fyi, fair v fiw i) S 1 SIS M — 1
Then, by combining (42} and (43} we have the following
Chebyshev collocation approximation to (35}

—(D+PD,P ' —u)U

gl oy g bu
_ ngr'“N |+ g;.BN
g.i;_',uN g;,_‘,liw
hy oy, hy Bas
Y R TR S R Y
K ay b B

2.3. The Ierative Method for the Helmholtz Equation

The high order basis functions in spectral methods dis-
agree with the low order basis functions in the finite element
method along the interfaces. Thus the coupling process will
lead to discontinuous trial functions. We have investigated
an iterative method to deal with this matching problem.

Let us describe the iterative method proposedin [11, 26].
Consider a simple rectangular domain Q=[—1,1]x
[—a,b] with a, b>0, decomposed in the subsets 2, =
[-1,1]7x[0,8], Q,=[—1,1]1x[—a,0]. We denote by
I'=1-1,1)x {0} the interface between £, and £2,, and by
062 the boundary of Q. Then for all square-integrable

CAl, LEE, AND OH

functions f, g and nonnegative constant p, we consider the
following Helmholiz equation;

in 2,
on 082,

~du+pu=Jf 49)
u=g

If v denotes the restriction of  to £2, and w denotes the
one to (2,, then (49} can be written in the split form,

—Av+pp=f inf,,
v=g on dQ\T, (50)
v=w onl)
dw dv
o on onlrl,
w=g on JQ,\1, (51)
—Aw+pw={f in ,,

where /0n denotes the normal dertvative along interface I

An analogous statement also holds for decompositions of
the domain € into any finite number of disjoint sub-
domains. In such a case, continuity of the function and of its
first derivative should be enforced at each interface
boundary.

We introduce the following iterative procedure in order
to solve (50)-(51). Let A, be any given function on . We
consider the two sequences of functions »' and w™, n 2 1,
which are the solutions of the two problems, respectively,

M +a™=f  inQ,
v =g on Q2 \T, (52)
v =i onl,
and
—AW{")-FCIUWM):f in,,
w(nl= g on 692\11 (53)
J (n) o ()
W_zf— on [,
ay ay
where
Ay =0wP+(1-0)4, onl, nzl, (54)

and 6 € (0, 1] is a relaxation parameter. The problems have
the inherited boundary conditions along 82 \["and 082\ 7,
respectively. If the sequences {o'"'} and {w'’} converge,
their limits are necessarily the solutions v and w to
(50)-(51). Let

c(f) =sup |e,(0)].

k=1

(55)
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where ¢,(0) = 1 — 8(1 + p(k)) for k> 1, p(¢) = tanh(\/1 b)/
tanh(\/? a), t>0. Then, for the Helmholtz equation with
homogeneous boundary condition (i.e., g =40}, it is proven
in [11] that for all 4,, a, and &, the iterative procedure
(52)-(54) converges if and only if ¢(#) < L.

3. NUMERICAL RESULTS

In this section, we give numerical results obtained by
applying our method to Helmholtz equations with Dirichlet
boundary conditions. We also compare the results obtained
by our coupling method with those obtained by the finite
element method.

First, we apply the coupling method to the Heimhoitz
equation by dividing the solution domain £ into two
subdomains; 2 is the L-shaped domain as depicted in
Fig. 3.1. The case when the domain is divided into three
subdomains is discussed in Test Two.

Test One.  Let us consider the Helmholtz problem, (49,
with p =1 on the L-shaped domain as depicted in Fig. 3.1.
Suppose /= g =r**sin(2/3)6. Then u(r, #) = r*" sin(2/3)6
is the true solution of (49), with u=1, and hence this
problem is actually Laplace equation. Thus the results
obtained by applying our method to the Helmholtz equa-
tion with nonhomogeneous Dirichlet boundary condition is
expected to be the same as those obtained by applying our
method to the Laplace equation. Hence, from Theorem 2.1,
an exponential convergence is expected when the method of
auxiliary mapping was used in the finite element part of the
coupling method.

In order to apply our coupling method to the problem
(49), the domain Q is decomposed into a rectangular sub-

domain 2, on which the true solution u., is analytic and
L3 L3
1,2 (1.2)
Qsp
ER) 11
LD T 1,13
] 8
Qfe
19 32 7
4 1
L0 L0
5 /| 00050
11 J
©0.05)
12
1,1 ©,1)
L
FIG. 3.1. The L-shaped domain with one singularity (re-entrant

corner) and the line L.
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TABLE I

Err_, (") at Each Iteration until Convergence Is Achieved

Without mapping With mapping
N=4 N=8 N=16 N=4a N=8 N=16
NIT p=2 r=4 p==28 p=2 p=4 p=8
o 0.587D00 0963D-00 0.764D-00  0995D-00 0%63D-00 0.964D-00
2 0265D-00 1.610D-02 1.555D-02 2292D-02 2.161D-02 1.727D-Q2
3 0.146D-00 3492D-03 2559D-04 1.377D-03 5.725D-04 2911D-04
4 Q102D-00 7.754D-04 5337D-05 9.480D-04 1.352D-04 5252D-06
S 8.622D-02 6341D-04 4814D-05 9.12703-04 £.200D-04 B.O03IIDAOT
& 8015D-02 6.217D-04 4.8100-05 Stop Stop 3421D-07
7 Stop Stop Stop 2.206D-07
8 1.816D-407
9 Stop
Note, Three mesh sizes are reported here,

a nonrectangular subdomain £, on which «,, has a corner
singularity. The subdomains 2, 2., and the mesh on £,
for the finite element method are depicted in Fig. 3.1

Let =0,n¢; be the common boundary of two
subdomains. We choose 1, as a linear interpolation of
(1, 1) and u,,(—1, 1). Let u!)) be the solution of

—dug,tu,=f inQ,,, (56)
Up=g on éQ N\, {57)
Uy =4, onrl, (58)

obtained by the spectral method. Now, let ul}’ be the
solution of the mixed boundary value problem

’Aufe+ufc=f in Qfes (59)
U= g on 42 N\T (60)

& oull)
%=%ﬁ on T, (61)

obtained by the p-version of the finite element method. Then
the Dirichiet boundary condition along [~ for the second
iteration is determined as follows:

).2=6u:-‘:)+(l—9);‘.1.

TABLE 11

The Error in Maximum Norm on Q2% and £,

Without Mapping With Mapping

N p-deg Err(2%) Emr,(2,) NIT Err (@) Err, (@) NIT

4 2 3374D-02 2759D-02 6 1.342D-04 1.248D-04 3§
8 4 4009D-05 31755D-04 6 1.178D-04 9593D-05 5
ie § T7123D-G6 1401D-04 6 3.574D-10 6.054D-07 6
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FIG. 32. The convergence history on various regions of the L-shaped domain with one singularity when (a) no mapping technique is used. {b) the

mapping technique is used.

This iterative process can be repeated until the desired
convergence is obtained. The optimal choice of the relaxa-
tion parameter # should be chosen dynamically for each
iteration. However, in our computations, the relaxation
parameter £ is chosen to be 0.51 at each iteration step and
a satisfactory rate of convergence is observed,

Throughout this section, Err (E), NIT, N, p, and DOF
denote the absolute error in the maximum norm on the
domain E, the number of iterations, the polynomial degree in

each variable of the spectral sofution in L2, the polynomial
degree of the basis functions for finite element solution in €2,
and the number of degrees of freedom, respectively.

The errors in maximum norm for finite element solutions
are computed by evaluating the absolute error at 25 points
per clement and those for the spectral solutions are
calculated by evaluating errors at collocation points.
Henceforth, we assume p < 8.

1t 1s observed that the maximum
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COUPLING OF SPECTRAL METHODS

TABLE 11T
The Maximum Errors of Finite Element Solutions

(a) Using the mapping technique

p-deg Err, (82,) Err (@,)  Err (@) Err (2 Err(82)
2 402D-02 437D-03  1.31D-03  601D-04 191D-04
4 297D-03 389D-04 2.77D-04 1.00D-04 3.67D-05
6 101D-03  334D-04 983D05 371D-05 143D-05
7 1.66D-03  236D-04 6.76D-05 255D-05 9.75D-06
8 1.53D-03  1.57D-04 482D-05 1.82D-05 699D-06

(b} Using the mapping technique
2 L69D-03  254D03 4.01D-04 L71D-04 661D05
4 1.72D-04  2.15D-04 507D-05 1.08D-05 2.32D-06
6 1.13D-05  Lt13D-04 1.87D-06 225D-07 3.34D-08
7 247D-06  247D-06  336D07 219D-08 3.30D0%
8 527D-07  527D07 6.68D-08 270D-09 6.35D-10

interface I. Because of the lower order accuracy on £,
(large elements are used as shown in Fig. 3.1), we select a
subregion, Q% = {(x, y)e 2,,: y = 1.5}, of the domain Q,,
where the influence from the interface will be smaller and
high order accuracy of spectral methods can be expected.

In all of our numerical experiments, the error on the inter-
face Err (1"} for each iteration decays very rapidly; then it
fluctuates around some equilibrium values. The general
convergent history is not sensitive to the initial choice of 1,,
which is a promising indication of the effectiveness of the
coupling methods. We stop the iteration process when the
change in Err () is <10%.

In Table | we report the convergence history of Err_ (1)

TABLE IVa
The CPU Time for the Coupling Method

Spectral part Finite element part

N CPU-Ab CPU-LU CPU-BF p CPU-Ab CPU-LU CPU-BF NIT CPU total

4 2 1588 5.69 0.01 5 21.62

8 02 0.13 001 4 3241 6.02 0.02 6 38.94

16 132 1247 0.16 8 9869 9.53 0.15 8 124.49
Note. The mapping technique is used on the finite element part.

TABLE IVh )
The CPU Time for the p-Version of the Finite Element Method

CPU-Ab 1596 2941 47.04 75.36 112,79 169.74 250.13 354.99
CPU-LU 10.13 1055 1053 11.21 1249 1492 18.61 2992
CPU-BF 001 002 004 008 015 024 039 061
CPU-total 2610 3998 57.61 86.65 12543 184.90 269.13 385.52
Note. The mapping techniques is used
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along the interface £ for both cases: when the method of
auxiliary mapping is not used and when it is used (for a
finite element solution). In Table I1, we show the maximum
errors on 2% and £, for the results at the last iterations. In
Fig. 3.2, we plot the maximum errors on three parts {that is,
Q*, I, ;) of the solution domain for three different sizes of
meshes for the coupling methods, Fig. 3.2a corresponds to
the case when no auxiliary mapping technique is used with
the finite element method while Fig. 3.2b corresponds to the
case where the mapping technique is used. By comparing
Figs. 3.2a and b, one can see that the mapping technique
leads to a dramatic improvement in accuracy. That is, one
can see an exponential convergence in the latter case.

To see the profile of the change of error, in Fig. 3.3, we
plot the maximum error in logarithmic scale of the solutions
along a line L, depicted in Fig. 3.1, across the domain £.
Once again, one can see the improvement by the mapping
technique which can remove the pollution effect caused by
the singularity,

In the tables in this paper, the columns labeled without
mapping stand for the case when the method of auxiliary
mapping is not applied for the finite element solution of
our coupling method. On the other hand, the columns
labeled with mapping stand for the case when the mapping
technique is applied.

In order to compare the coupling method with the
p-version of the finite element method, we apply the
p-version of the finite element method to the same problem
on the whole domain @ with mesh depicted in Fig. 3.4.
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CPU Time
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FIG. 35. Comparison of the coupiing method and the p-version of the
finite element method.
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FIG. 3.6. The L-shaped domain with two singularities: A rg-entrant
corner and a crack.

Let 2, =) cicser 2=Uscicis®n Q3=Up<icne,
2,=Usngigln 25=)scice, where e; stands for
the ith element {see Fig, 3.4). Then the maximum error in
each subdomain is given by Tables 111: Table Illa is the
case when the method of auxiliary mapping is not used and
Table I is the case when the mapping is used.
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g 1000805
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1.000E_10 1 [N BNl 1 [ AN 1 I 1 1 tilt
1 10 100 1000

Number of Degrees of Freedom

CAI, LEE, AND OH

From Table 111b, one can see that the maximum error
is gradually decreasing from the region Q, to the Q,.
However, Table I shows that the coupling method yields
high order accuracy throughout the subregion Q¥ =
2,000,

Next we present the CPU time comparison between the
coupling method and the full p-version finite element
methods (Tables 1Va, IVh.) The final solution of the
coupling method or the finite element method amounts to
solving a system in the form Ax=). Thus, we use the
following notations to denote the CPU time needed to com-
plete different stages of solving this system: Let CPU-Ab,
CPU-LU, CPU-BF, CPU-total stand for the CPU time
required to generate the matrix 4 and load vector b,
calculate the factorization LU of the matrix A once, solve
LU x=Db with backward and forward substitutions per
iteration, and the total CPU time (all iterations are
counted!), respectively. The load vector b should be
calculated at each iteration. However, the factorization LU
is done only once. Thus, the extra cost at ¢ach iteration is
calculating b and solving LU x,,=b with backward and
forward substitutions.

Err.(25) in Table Vb and Err .{£2¥,} in Table II versus
CPU time is plotted in Fig. 3.5 (Note: 25 = 22%,). One can
conclude from Fig. 3.5 that our coupling method is cheaper
than the finite element method when the spectral domain is
larger than the finite element domain. In Table 1Va, CPU
time when N = 4 for the spectral part is too small to record.
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FIG. 37. The convergence history on various regions of the L-shaped domain with two singularities when (a) no mapping technique is used;

{b) the mapping technique is used.
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TABLE Y

Each Iteration until Convergence Is Achieved®

Without mapping With mapping
N=4 N=8 N=16 N=4 N=8 N=16
NIT p=12 p=4 p=28 p=2 p=4 p=8
(a) Err (1)
1 1721D-00 1.732D-00 1.744D-00 1.721D-00 1.740D-00 1.748D-00
2 2633D-01 1042D-01 1078D-01  1.212D-01 8.203D-02 17.955D-03
3 1.300D-01 2193D-03 5962D-03 §.234D-03 2338D-03 2418D-03
4 1.107D-01 4997D-03 9964D-04 2643D-03 227iD-04 1.162D-04
5 1070D-01 5523D-03 1456D-03 3.236D-03 2.745D-04 3.455D-06
6 Stop Stop Stop Stop Stop 4.191D-07
7 2097D-07
8 1.644D-07
9 Stop
{b) Err ()"
I [.786D-00 1.70ID-00 1.705D-00 1.786D-0G 1.7GZ2D-0G 1.705D-00
2 3737D-00 1.265D-01 1278D-01 1.045D-01 5.803D-02 5835D-02
3 1.544D-01 7467D-03 B8.107D-03 6.173D-03 2408D-03 2.480D-03
4 1.331D-01 5294D-03 3.655D-04 1.621D-03 2.893D-04 7.685D-05
5 1.401D-01 1.117D-03 1.562D-04 2.958D-03 2.552D-04 3.882D-06
[ Stop Stop Stop Swop Stop 5.267D-07
7 3.790D-07
8 3.272D-07
9 Stop

“ Three mesh sizes are reported.
# When the method of auxiliary mapping is and is not applied on Q7.

As long as the interface !” and the selection of the
neighborhood § of the singularity (see Step 1 of the method
of auxiliary mapping} do not make any “bad elements” on
the finite element part, one can place the interface close to
the neighborhood § in order to have the best results for a
fixed number of DOF.,

In the second test, we consider the case when the given
domain £2 is decomposed into three subdomains.

Test Two. Let us consider the problem (49) on a
domain @ which contains two singularities (a re-entrant
corner and a crack) as depicted in Fig. 3.6. Since the numeri-

TABLE VI

The Error in Maximum Norm on 3%, Q¢, and Q7

N pdeg  Frr,(G}) Err (2]} Err (Q3) NIT
Without mapping
4 2 7.964D-02 1.070D-01 1.401D-01 3
8 4 3442D-03 2.241D-02 3.759D-03 5
6 8 9.598D-04 1.542D-02 3.132D-03 8
With mapping
4 2 1.678D-03 3.236D-03 5.286D-03 5
8 4 6.381D-05 5.707D-04 7.687D-04 5
16 8 1.556D-08 5.408D-07 1.605D-06 8

S81/108/2-9
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cal results for y =1 are similar to those for u =0, we report
the results obtained by applying the coupling method to the
Poisson equation: —Au=fin £, u=g on 8§2. Suppose
g=u, -tuyand f= —A(u, -u,), where

Tl(x& y)= (_(y+2)= X),

w(r, @) = r'? sin{/2),

w(x, y)=w(T\(x, y)),

Tz(v\’, }}) = {(_}’ _2)3 —X),

wylr, 0)=r*?sin(20/3),

0%, y) = w(T5(x, p)).

Then u,,=u,-u, 18 the true solution of the Poisson

equation. Let

QL= {(xyeRiy< -1},
Qi={(x ye@:1<y),

Q. ={{x,y)e:-1<y<1},
RF={{x,y)e2:-05< y<0.5}

andlet Iy =Q, N Q,, I=02, 82,

The convergence history of the maximum errors on both
interface /", and I, arelisted in Tables Va and b, respectively,
As before, the iterations were stopped when the changes in
both Err(I7;) and Err,(I;) are <10%. This rule is
applied on Tables 11la and b. Table VI shows the maximum
errors on 2%, Q¢ Q7.

In Fig. 3.7, we plot the errors on various parts (that is,
Qi Iy, QF, Iy, Q%) of the solution domain for three dif-
ferent sizes of meshes for the coupling methods. Fig. 3.7a
corresponds to the case when no auxiliary mapping techni-

que is used with the finite element method while Fig. 3.7b
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has the case where the mapping technique is used. Again in
Fig. 3.8, we plot the maximum error in logarithmic scale of
the solutions along a line L, depicted in Fig. 3.6. Across the
domain £, we can see the improvement with the mapping
technique in removing the singularity effects.

4. CONCLUSION

In our first attempt to couple spectral methods and the
p-version of the finite element method, we obtained several
promising results. In the numerical tests, we achieved
the advantages of both methods: efficient handling of
singularities caused by the irregular domain geometry and
high accuracy of spectral methods by eliminating the
pollution effects, We intend to extend our method to general
elliptic equations as well as three-dimensional cases.
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